Metabolic Alkalosis

Anna Vinnikova, M.D.
Division of Nephrology
Virginia Commonwealth University

Graphics by permission from
The Fluid, Electrolyte and Acid-Base Companion, S. Faubel and J. Topf, http://www.pbfluids.com
A 76 year old nursing home resident with h/o COPD is admitted to the hospital with severe gastroenteritis, and is noted to have a high serum HCO_3^-. An ABG is ordered:

ABG:

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.47</td>
</tr>
<tr>
<td>pCO_2</td>
<td>46</td>
</tr>
<tr>
<td>HCO_3^-</td>
<td>32</td>
</tr>
<tr>
<td>pO_2</td>
<td>96</td>
</tr>
</tbody>
</table>

BMP:

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na^+</td>
<td>130</td>
</tr>
<tr>
<td>K^+</td>
<td>3.2</td>
</tr>
<tr>
<td>Cl^-</td>
<td>86</td>
</tr>
<tr>
<td>HCO_3^-</td>
<td>33</td>
</tr>
</tbody>
</table>

Urine pH 5.5

What is causing elevated serum HCO_3^-:

A. Compensated metabolic alkalosis

B. Metabolic alkalosis w respiratory acidosis

C. Metabolic alkalosis w anion gap metabolic acidosis
A 76 year old nursing home resident with h/o COPD is admitted to the hospital with severe gastroenteritis, and is noted to have a high serum HCO$_3^-$.

An ABG is ordered:

ABG:
- pH 7.47
- pCO$_2$ 46
- HCO$_3^-$ 32
- pO$_2$ 96

BMP:
- Na$^+$ 130
- K$^+$ 3.2
- Cl$^-$ 86
- HCO$_3^-$ 33

Urine pH 5.5

What is causing elevated serum HCO$_3^-$:

A. Compensated metabolic alkalosis

B. Metabolic alkalosis w respiratory acidosis

C. Metabolic alkalosis w anion gap metabolic acidosis
Metabolic Alkalosis: mechanism

Generation

- Addition of bicarbonate
- Contraction alkalosis
- Loss of hydrogen
Metabolic Alkalosis: maintenance

- Excess mineralocorticoid activity
- Hypovolemia
- Inability to excrete excess bicarbonate
- Hypokalemia
- Hypochloremia
Metabolic Alkalosis: classification

Chloride (saline) responsive

Chloride (saline) resistant
Metabolic Alkalosis: diagnosis

Diagnosis The urine chloride concentration distinguishes saline-responsive from saline-resistant metabolic alkalosis.

Saline-responsive
- Urine Cl⁻ < 20 mEq/L
- Urine Na⁺ > 20 mEq/L

Saline-resistant
- Urine Cl⁻ > 20 mEq/L
- Urine Na⁺ > 20 mEq/L
Metabolic Alkalosis: chloride (saline) responsive

- Associated with volume depletion
Metabolic Alkalosis: chloride (saline) resistant

- Not associated with volume depletion
Unexplained metabolic alkalosis

- Surreptitious vomiting
- Diuretics abuse
- Laxatives abuse
- Licorice abuse
- Hyperaldosteronism states
A 56 year old man with a 25-pack-year smoking history, h/o CVA and a 10-year h/o HTN treated with chlorthalidone, presents with generalized fatigue. BP is 110/70
Na 128, K 3.3, Cl 79, bicarb 38
pH 7.50, PCO₂ 50, PO₂ 74

Which condition best explains the acid-base disturbance?

A. Metabolic alkalosis induced by diuretic use
B. Respiratory acidosis induced by COPD
C. Neurogenic-induced respiratory alkalosis
D. Primary hyperaldosteronism
A 56 year old man with a 25-pack-year smoking history, h/o CVA and a 10-year h/o HTN treated with chlorthalidone, presents with generalized fatigue. BP is 110/70 Na 128, K 3.3, Cl 79, bicarb 38 pH 7.50, PCO₂ 50, PO₂ 74

Which condition best explains the acid-base disturbance?

A. Metabolic alkalosis induced by diuretic use
B. Respiratory acidosis induced by COPD
C. Neurogenic-induced respiratory alkalosis
D. Primary hyperaldosteronism
A 4 year old girl is brought to her pediatrician’s office with lower extremity weakness and inability to walk. She is afebrile, but her BP is 130/80. Na 140, K 2.1, bicarb 36. Further history revealed that the child ate an entire dish of black licorice in her grandmother’s house.

Which hormone caused this disorder:

A. Aldosterone
B. Cortisol
C. Dihydrotestosterone
D. Progesterone
A 4 year old girl is brought to her pediatrician’s office with lower extremity weakness and inability to walk. She is afebrile, but her BP is 130/80. Na 140, K 2.1, bicarb 36. Further history revealed that the child ate an entire dish of black licorice in her grandmother’s house.

Which hormone caused this disorder:

A. Aldosterone
B. Cortisol
C. Dihydrotestosterone
D. Progesterone
A 20 year old woman is referred to you because she has recurrent episodes of muscle weakness associated with hypokalemia. Admits to occasional use of laxatives for weight loss. Denies recent diarrhea, vomiting or illicit drugs. Orthostatic on exam.

Serum: Na 135, K 3.0, Cl 80, bicarb 40,
Plasma aldosterone 32.8 ng/dl, plasma renin activity 89 ng/ml/hr
Urine: Na 50, K 20, Cl 5, pH 7.0

Which of the following is the most likely cause of these laboratory abnormalities?
A. Recent ingestion of furosemide
B. Recent episode of vomiting
C. Laxative abuse
D. Bartter syndrome
A 20 year old woman is referred to you because she has recurrent episodes of muscle weakness associated with hypokalemia. Admits to occasional use of laxatives for weight loss. Denies recent diarrhea, vomiting or illicit drugs. Orthostatic on exam.

Serum: Na 135, K 3.0, Cl 80, bicarb 40, Plasma aldosterone 32.8 ng/dl, plasma renin activity 89 ng/ml/hr

Urine: Na 50, K 20, Cl 5, pH 7.0

Which of the following is the most likely cause of these laboratory abnormalities?

A. Recent ingestion of furosemide
B. Recent episode of vomiting
C. Laxative abuse
D. Bartter syndrome
Metabolic Alkalosis:
Why use urine Cl\(^-\), not urine Na\(^+\)?
Metabolic Alkalosis:
Why use urine Cl^-, not urine Na^+?

- Typically, both U_{Na} and U_{Cl} will be low in volume depletion
Metabolic Alkalosis: Why use urine Cl-, not urine Na+?

- Typically, both U_{Na} and U_{Cl} will be low in volume depletion.
- However, in metabolic alkalosis, there might be dissociation between U_{Na} and U_{Cl}.

Metabolic Alkalosis: Why use urine Cl\(^-\), not urine Na\(^+\)?

- Typically, both \(U_{Na} \) and \(U_{Cl} \) will be low in volume depletion.
- However, in metabolic alkalosis, there might be dissociation between \(U_{Na} \) and \(U_{Cl} \).
- During bicarbonate urine dump (think vomiting), \(Na^+ \) will be wasted with \(HCO_3^- \), and \(U_{Na} \) will be elevated.
A 50 year old man is seen in your office after vomiting x 5 days due to viral gastroenteritis. He last vomited 24 hrs ago. Physical exam reveals BP 110/70 supine and 95/60 standing, reduced skin turgor, and weight is 3 kg below his baseline. Which set of labs fits best with this clinical scenario?

Case:

Set A

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUN</td>
<td>31</td>
</tr>
<tr>
<td>Cr</td>
<td>1.2</td>
</tr>
<tr>
<td>Na</td>
<td>141</td>
</tr>
<tr>
<td>K</td>
<td>3.2</td>
</tr>
<tr>
<td>Cl</td>
<td>90</td>
</tr>
<tr>
<td>HCO3</td>
<td>36</td>
</tr>
<tr>
<td>pH</td>
<td>7.5</td>
</tr>
<tr>
<td>PCO2</td>
<td>48</td>
</tr>
<tr>
<td>UNa</td>
<td>10</td>
</tr>
<tr>
<td>UK</td>
<td>35</td>
</tr>
<tr>
<td>UCl</td>
<td>10</td>
</tr>
<tr>
<td>UpH</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Set B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUN</td>
<td>31</td>
</tr>
<tr>
<td>Cr</td>
<td>1.2</td>
</tr>
<tr>
<td>Na</td>
<td>141</td>
</tr>
<tr>
<td>K</td>
<td>3.2</td>
</tr>
<tr>
<td>Cl</td>
<td>90</td>
</tr>
<tr>
<td>HCO3</td>
<td>36</td>
</tr>
<tr>
<td>pH</td>
<td>7.5</td>
</tr>
<tr>
<td>PCO2</td>
<td>48</td>
</tr>
<tr>
<td>UNa</td>
<td>35</td>
</tr>
<tr>
<td>UK</td>
<td>40</td>
</tr>
<tr>
<td>UCl</td>
<td>10</td>
</tr>
<tr>
<td>UpH</td>
<td>7.0</td>
</tr>
</tbody>
</table>
A 50 year old man is seen in your office after vomiting x 5 days due to viral gastroenteritis. He last vomited 24 hrs ago. Physical exam reveals BP 110/70 supine and 95/60 standing, reduced skin turgor, and weight is 3 kg below his baseline. Which set of labs fits best with this clinical scenario?

<table>
<thead>
<tr>
<th>Set A</th>
<th>Set B</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUN 31</td>
<td>BUN 31</td>
</tr>
<tr>
<td>Cr 1.2</td>
<td>Cr 1.2</td>
</tr>
<tr>
<td>Na 141</td>
<td>Na 141</td>
</tr>
<tr>
<td>K 3.2</td>
<td>K 3.2</td>
</tr>
<tr>
<td>Cl 90</td>
<td>Cl 90</td>
</tr>
<tr>
<td>HCO3 36</td>
<td>HCO3 36</td>
</tr>
<tr>
<td>pH 7.5</td>
<td>pH 7.5</td>
</tr>
<tr>
<td>PCO2 48</td>
<td>PCO2 48</td>
</tr>
<tr>
<td>UNa 10</td>
<td>UNa 35</td>
</tr>
<tr>
<td>UK 35</td>
<td>UK 40</td>
</tr>
<tr>
<td>UCl 10</td>
<td>UCl 10</td>
</tr>
<tr>
<td>UpH 5.0</td>
<td>UpH 7.0</td>
</tr>
</tbody>
</table>
Case

- You admit the patient to the hospital and start IV 0.9% NaCl and KCl. You repeat labs in 6 hrs

- Labs reveal:

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUN</td>
<td>20 mg/dl</td>
</tr>
<tr>
<td>Cr</td>
<td>1.0 mg/dl</td>
</tr>
<tr>
<td>Na</td>
<td>141 meq/L</td>
</tr>
<tr>
<td>K</td>
<td>3.5 meq/L</td>
</tr>
<tr>
<td>Cl</td>
<td>95 meq/L</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>30 meq/L</td>
</tr>
<tr>
<td>pH</td>
<td>7.45</td>
</tr>
<tr>
<td>PCO₂</td>
<td>45 mm Hg</td>
</tr>
<tr>
<td>U_Na</td>
<td>35 meq/L</td>
</tr>
<tr>
<td>U_K</td>
<td>40 meq/L</td>
</tr>
<tr>
<td>U_Cl</td>
<td>20 meq/L</td>
</tr>
<tr>
<td>U_ph</td>
<td>7.0</td>
</tr>
</tbody>
</table>
A 35 yo man who has been healthy presents with severe flank pain and hematuria after a softball outing. The pain is sharp and radiates to the groin. He vomited 8 times *en route*. He is found to have a Lt UPJ stone. On presentation, BP is 130/90 and HR 110.

BUN 24, cr 0.9, Na 141, K 4, Cl 100, bicarb 34 U Na 20, U Cl 3, U K 20

ABG 7.61, PCO2 36

What is the acid-base disorder?

A. Metabolic alkalosis
B. Respiratory alkalosis
C. Both metabolic and respiratory alkalosis
D. Metabolic and respiratory alkalosis, with hidden metabolic acidosis
A 35 yo man who has been healthy presents with severe flank pain and hematuria after a softball outing. The pain is sharp and radiates to the groin. He vomited 8 times *en route*. He is found to have a Lt UPJ stone. On presentation, BP is 130/90 and HR 110.

BUN 24, cr 0.9, Na 141, K 4, Cl 100, bicarb 34
U Na 20, U Cl 3, U K 20
ABG 7.61, PCO2 36

What is the acid-base disorder?

A. Metabolic alkalosis
B. Respiratory alkalosis
C. Both metabolic and respiratory alkalosis
D. Metabolic and respiratory alkalosis, with hidden metabolic acidosis
A 46-yo man w a 20-year history of HTN. H/o hypokalemia and IBS. He takes amlodipine 5 mg/d.
WD/WN, BP 150/88, HR 74. Hypertensive retinopathic changes.
Laboratory studies:
Na 142, K 2.7, Cl 105, bicarb 30
UA: pH 5.0; SG1020; dipstick negative for protein and blood
24-hour urine: Cr 1200 mg, Na 100 meq, K 82 meq, Ca 200 mg

What is the most likely cause of this patient’s hypokalemia?
A. Distal renal tubular acidosis
B. Primary hyperaldosteronism
C. Gitelman’s syndrome
D. Diarrhea
A 46-yo man w a 20-year history of HTN. H/o hypokalemia and IBS. He takes amlodipine 5 mg/d. WD/WN, BP 150/88, HR 74. Hypertensive retinopathic changes.

Laboratory studies:
Na 142, K 2.7, Cl 105, bicarb 30
UA: pH 5.0; SG1020; dipstick negative for protein and blood
24-hour urine: Cr 1200 mg, Na 100 meq, K 82 meq, Ca 200 mg

What is the most likely cause of this patient’s hypokalemia?
A. Distal renal tubular acidosis
B. Primary hyperaldosteronism
C. Gitelman’s syndrome
D. Diarrhea
A 60 year old woman with h/o HTN admitted after 7 days of severe vomiting. Appears ill. Orthostatic. Abdominal exam - rebound tenderness and no bowel sounds. Na 140, K 3.2, Cl 80, bicarb 10, glucose 90, BUN 90, cr 3
pH 7.29, PCO₂ 25

What is acid-base disturbance?

A. Hyperchloremic metabolic acidosis
B. Anion-gap metabolic acidosis
C. Anion gap metabolic acidosis and metabolic alkalosis
D. Anion gap metabolic acidosis and respiratory alkalosis
A 60 year old woman with h/o HTN admitted after 7 days of severe vomiting. Appears ill. Orthostatic. Abdominal exam - rebound tenderness and no bowel sounds.
Na 140, K 3.2, Cl 80, bicarb 10, glucose 90, BUN 90, cr 3
PpH 7.29, PCO₂ 25

What is acid-base disturbance?
A. Hyperchloremic metabolic acidosis
B. Anion-gap metabolic acidosis
C. Anion gap metabolic acidosis and metabolic alkalosis
D. Anion gap metabolic acidosis and respiratory alkalosis