1. State the domain of the function, identify any intercepts, make a table of points, and sketch the graph:

\[f(x) = 2x - 3 \]

2. Sketch the graph of the piece-wise defined function.

\[f(x) = \begin{cases}
-3 & \text{if } x < 0 \\
2x - 3 & \text{if } 0 < x < 3 \\
3 & \text{if } x > 3
\end{cases} \]

3. Determine analytically if the following function is even, odd or neither:

\[f(x) = 3x^2 - 4 \]
4. Use the graph of \(y = f(x) \) given below to answer the question.

(a) Find the domain of \(f \).

(b) Find the range of \(f \).

(c) Determine \(f(-2) \).

(d) Solve \(f(x) = 4 \).

(e) List the \(x \)-intercepts, if any exist.

(f) List the \(y \)-intercepts, if any exist.

(g) Find the number of solutions to \(f(x) = 1 \).

(h) List the intervals where \(f \) is increasing.

(i) List the local maximums, if any exist.

(j) List the local minimums, if any exist.